Full metadata record
DC FieldValueLanguage
dc.contributor.authorCao, Zehongen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorLai, Kuan-Linen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorKing, Jung-Taien_US
dc.contributor.authorLiao, Kwong-Kumen_US
dc.contributor.authorFuh, Jong-Lingen_US
dc.contributor.authorWang, Shuu-Jiunen_US
dc.date.accessioned2020-02-02T23:54:29Z-
dc.date.available2020-02-02T23:54:29Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2019.2905823en_US
dc.identifier.urihttp://hdl.handle.net/11536/153511-
dc.description.abstractInherent fuzzy entropy is an objective measurement of electroencephalography (EEG) complexity reflecting the robustness of brain systems. In this study, we present a novel application of multiscale relative inherent fuzzy entropy using repetitive steady-state visual evoked potentials (SSVEPs) to investigate EEG complexity change between two migraine phases, i.e., interictal (baseline) and preictal (before migraine attacks) phases. We used a wearable headband EEG device with O1, Oz, O2, and Fpz electrodes to collect EEG signals from 80 participants [40 migraine patients and 40 healthy controls (HCs)] under the following two conditions: During resting state and SSVEPs with five 15-Hz photic stimuli. We found a significant enhancement in occipital EEG entropy with increasing stimulus times in both HCs and patients in the interictal phase, but a reverse trend in patients in the preictal phase. In the 1st SSVEP, occipital EEG entropy of the HCs was significantly lower than that of patents in the preictal phase (FDR-adjusted p < 0.05). Regarding the transitional variance of EEG entropy between the 1st and 5th SSVEPs, patients in the preictal phase exhibited significantly lower values than patients in the interictal phase (FDR-adjusted p < 0.05). Furthermore, in the classification model, the AdaBoost ensemble learning showed an accuracy of 81 $ \pm $ 6 & x0025; and area under the curve of 0.87 for classifying interictal and preictal phases. In contrast, there were no differences in EEG entropy among groups or sessions by using other competing entropy models, including approximate entropy, sample entropy, and fuzzy entropy on the same dataset. In conclusion, inherent fuzzy entropy offers novel applications in visual stimulus environments and may have the potential to provide a preictal alert to migraine patients.en_US
dc.language.isoen_USen_US
dc.subjectElectroencephalography (EEG)en_US
dc.subjectinherent fuzzy entropyen_US
dc.subjectmigraineen_US
dc.subjectsteady-state visual evoked potential (SSVEP)en_US
dc.titleExtraction of SSVEPs-Based Inherent Fuzzy Entropy Using a Wearable Headband EEG in Migraine Patientsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2019.2905823en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume28en_US
dc.citation.issue1en_US
dc.citation.spage14en_US
dc.citation.epage27en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000506608300003en_US
dc.citation.woscount5en_US
Appears in Collections:Articles