完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Hao-Wenen_US
dc.contributor.authorRaghunath, Putikamen_US
dc.contributor.authorWang, Kai-lien_US
dc.contributor.authorCheng, Peien_US
dc.contributor.authorHaung, Tianyien_US
dc.contributor.authorWu, Quantanen_US
dc.contributor.authorYuan, Junen_US
dc.contributor.authorLin, Yu-Cheen_US
dc.contributor.authorWang, Hao-Chengen_US
dc.contributor.authorZou, Yingpingen_US
dc.contributor.authorWang, Zhao-Kuien_US
dc.contributor.authorLin, M. C.en_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.contributor.authorYang, Yangen_US
dc.date.accessioned2020-02-02T23:54:34Z-
dc.date.available2020-02-02T23:54:34Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acs.nanolett.9b04586en_US
dc.identifier.urihttp://hdl.handle.net/11536/153529-
dc.description.abstractBulk heterojunction (BHJ) structure based organic photovoltaics (OPVs) have recently showed great potential for achieving high power conversion efficiencies (PCEs). An ideal BHJ structure would feature large donor/acceptor interfacial areas for efficient exciton dissociation and gradient distributions with high donor and acceptor concentrations near the anode and cathode, respectively, for efficient charge extraction. However, the random mixing of donors and acceptors in the BHJ often suffers the severe charge recombination in the interface, resulting in poor charge extraction. Herein, we propose a new approach-treating the surface of the zinc oxide (ZnO) as an electron transport layer with potassium hydroxide-to induce vertical phase separation of an active layer incorporating the nonfullerene acceptor IT-4F. Density functional theory calculations suggested that the binding energy difference between IT-4F and the PBDB-T-2Cl, to the potassium (K)-presenting ZnO interface, is twice as strong as that for IT-4F and PBDB-T-2Cl to the untreated ZnO surface, such that it would induce more IT-4F moving toward the K-presenting ZnO interface than the untreated ZnO interface thermodynamically. Benefiting from efficient charge extraction, the best PCEs increased to 12.8% from 11.8% for PBDB-T-2Cl:IT-4F-based devices, to 12.6% from 11.6% for PBDB-T-2Cl:Y1-4F-based devices, to 13.5% from 12.2% for PBDB-T-2Cl:Y6-based devices, and to 15.7% from 15.1% for PM6:Y6-based devices.en_US
dc.language.isoen_USen_US
dc.subjectOrganic photovoltaicsen_US
dc.subjectnonfullerene acceptorsen_US
dc.subjectvertical phase separationen_US
dc.subjectpotassiumen_US
dc.subjectDFT calculationen_US
dc.titlePotassium-Presenting Zinc Oxide Surfaces Induce Vertical Phase Separation in Fullerene-Free Organic Photovoltaicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.nanolett.9b04586en_US
dc.identifier.journalNANO LETTERSen_US
dc.citation.volume20en_US
dc.citation.issue1en_US
dc.citation.spage715en_US
dc.citation.epage721en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000507151600093en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文