Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chaug-Ingen_US
dc.contributor.authorHuang, Yu-Cheen_US
dc.contributor.authorWong, Ka Ioen_US
dc.date.accessioned2020-02-02T23:54:36Z-
dc.date.available2020-02-02T23:54:36Z-
dc.date.issued2020-01-02en_US
dc.identifier.issn1942-7867en_US
dc.identifier.urihttp://dx.doi.org/10.1080/19427867.2018.1502505en_US
dc.identifier.urihttp://hdl.handle.net/11536/153556-
dc.description.abstractThe importance of ocean shipping for international trade forecasting is growing due to the specialization and evolution of industrial sectors around the world. Classic approaches for cargo volume forecasting, such as time series and casual methods, may have poor performances if the data size is small with large fluctuations. This study proposes a hybrid forecasting model based on the Grey forecasting models and an industry share transformation technique. The hybrid model is particular useful for problems when there are dynamic changes in the industry share and the sample size in historical dataset is small. Using a case study of cargo export and import by industry between Taiwan and North American, the proposed model shows good forecasting performances. The findings can be useful for the marine carriers in responding to the dynamic industrial changes.en_US
dc.language.isoen_USen_US
dc.subjectGrey theoryen_US
dc.subjecthybrid modelen_US
dc.subjectcargo volumesen_US
dc.subjectforecastingen_US
dc.subjectindustry shareen_US
dc.titleA Grey hybrid model with industry share for the forecasting of cargo volumes and dynamic industrial changesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/19427867.2018.1502505en_US
dc.identifier.journalTRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCHen_US
dc.citation.volume12en_US
dc.citation.issue1en_US
dc.citation.spage25en_US
dc.citation.epage36en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000507609500004en_US
dc.citation.woscount1en_US
Appears in Collections:Articles