完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Kuo-Weien_US
dc.contributor.authorChang, Tian-Sheuanen_US
dc.date.accessioned2020-02-02T23:54:37Z-
dc.date.available2020-02-02T23:54:37Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1549-8328en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSI.2019.2942529en_US
dc.identifier.urihttp://hdl.handle.net/11536/153564-
dc.description.abstractHardware accelerators for convolution neural networks (CNNs) enable real-time applications of artificial intelligence technology. However, most of the existing designs suffer from low hardware utilization or high area cost due to complex data flow. This paper proposes a hardware efficient vectorwise CNN accelerator that adopts a $3\times 3$ filter optimized systolic array using 1-D broadcast data flow to generate partial sum. This enables easy reconfiguration for different kinds of kernels with interleaved input or elementwise input data flow. This simple and regular data flow results in low area cost while attains high hardware utilization. The presented design achieves 99, 97, 93.7, and 94 hardware utilization for VGG-16, ResNet-34, GoogLeNet, and Mobilenet, respectively. Hardware implementation with TSMC 40nm technology takes 266.9K NAND gate count and 191KB SRAM to support 168GOPS throughput while consumes only 154.98mW when running at 500MHz operating frequency, which has superior area and power efficiency than other designs.en_US
dc.language.isoen_USen_US
dc.subjectConvolution neural networks (CNNs)en_US
dc.subjecthardware designen_US
dc.subjectacceleratorsen_US
dc.titleVWA: Hardware Efficient Vectorwise Accelerator for Convolutional Neural Networken_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSI.2019.2942529en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERSen_US
dc.citation.volume67en_US
dc.citation.issue1en_US
dc.citation.spage145en_US
dc.citation.epage154en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000508385000013en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文