標題: | Tunable nitrogen-doped graphene sheets produced with in situ electrochemical cathodic plasma at room temperature for lithium-ion batteries |
作者: | Yen, Po-Jen Ilango, P. Robert Chiang, Ya-Chi Wu, Chia-Wei Hsu, Yung-Chi Chueh, Yu-Lun Wei, Kung-Hwa 交大名義發表 材料科學與工程學系 National Chiao Tung University Department of Materials Science and Engineering |
關鍵字: | Nitrogen-doped;Graphene;Tunable;Plasma;in situ;Anode;Lithium ion batteries |
公開日期: | 1-Jun-2019 |
摘要: | This paper describes a facile and tunable method, performed at room temperature and amenable to mass-production, for the preparation of nitrogen-doped graphene sheets using in situ electrochemical cathodic plasma exfoliation of a graphite/melamine composite. The plasma generated at the submerged surface of the graphite/melamine composite electrode not only exfoliated the graphite granules into graphene sheets but also induced the doping of nitrogen atoms. The sizes and morphologies of the graphene sheets, comprising four to five layers of graphene, were confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Tuning the concentration of melamine in the graphite/melamine composites led to different levels of nitrogen-doping in the graphene sheets; the stability of the nitrogen-doped graphene sheets was investigated in various harsh environments. Furthermore, the use of the 4.63 at% nitrogen-doped graphene sheets as anode materials resulted in lithium-ion batteries displaying excellent performance, with a capacity of 488 mA h g(-1) at 100 mA g(-1) after 100 cycles that was better than that of the device incorporating pristine graphene sheets (344 mA h g(-1) at 100 mA g(-1) after 100 cycles). This method is a new and tunable approach for producing massive amounts of nitrogen-doped graphene sheets from graphite powder at room temperature. (C) 2019 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.mtener.2019.01.003 http://hdl.handle.net/11536/153578 |
ISSN: | 2468-6069 |
DOI: | 10.1016/j.mtener.2019.01.003 |
期刊: | MATERIALS TODAY ENERGY |
Volume: | 12 |
起始頁: | 336 |
結束頁: | 347 |
Appears in Collections: | Articles |