完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yu-Chengen_US
dc.contributor.authorChen, Tolyen_US
dc.date.accessioned2020-02-02T23:54:38Z-
dc.date.available2020-02-02T23:54:38Z-
dc.date.issued2019-10-01en_US
dc.identifier.issn2199-4536en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s40747-018-0081-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/153584-
dc.description.abstractEstimating the unit cost of each product precisely and accurately is a prerequisite to determining the profitability of a manufacturer, which is usually addressed by fitting the underlying learning process. However, existing methods for this purpose often deal with a logarithmic or log-sigmoid value, rather than the original value, of the unit cost. To resolve this problem, in this study, a new fuzzy collaborative intelligence (FCI) approach is proposed by considering the original value of the unit cost directly. The effectiveness of the new FCI approach is validated with a real dynamic random access memory (DRAM) case. The experimental results showed that the new FCI approach outperformed two existing methods in improving the fitting accuracy in terms of MAE and MAPE and also in reducing the average range of the fitted unit costs.en_US
dc.language.isoen_USen_US
dc.subjectUnit costen_US
dc.subjectLearning processen_US
dc.subjectFuzzy collaborative intelligenceen_US
dc.titleAn advanced fuzzy collaborative intelligence approach for fitting the uncertain unit cost learning processen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s40747-018-0081-0en_US
dc.identifier.journalCOMPLEX & INTELLIGENT SYSTEMSen_US
dc.citation.volume5en_US
dc.citation.issue3en_US
dc.citation.spage303en_US
dc.citation.epage313en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000491229900003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文