Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Hsin-Jayen_US
dc.contributor.authorWei, Pai-Chunen_US
dc.contributor.authorSu, Hui-Yien_US
dc.contributor.authorWang, Kuang-Kuoen_US
dc.contributor.authorYen, Wan-Tingen_US
dc.contributor.authorJen, I-Lunen_US
dc.contributor.authorHe, Jianen_US
dc.date.accessioned2020-02-02T23:54:38Z-
dc.date.available2020-02-02T23:54:38Z-
dc.date.issued2019-10-01en_US
dc.identifier.issn2574-0962en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsaem.9b01531en_US
dc.identifier.urihttp://hdl.handle.net/11536/153587-
dc.description.abstractZn4Sb3-based compounds constitute a lead-free material family with a best thermoelectric figure of merit (zT) in the midtemperature range. Unlike being a stoichiometric compound, the mutual solubility of Zn and Sb elicits rich microstructures and the structural instability of Zn4Sb3. The solubility limit and neighboring phase relations are crucial for the delicate balance between the thermoelectric performance and phase stability of Zn4Sb3. In this work, we constructed the isothermal section of the Zn-Sb-In ternary phase diagram, built the zT map near the beta-Zn4Sb3 phase region, and showed that the formation of multiscale microstructures has a profound impact on the electronic and phonon transport properties and phase stability. A high-zT zone was identified near the phase boundary between the two-phase InSb + Zn5Sb4In2 and the three-phase Zn4Sb4+InSb+ Zn5Sb4In2 regions. A sample with a nominal composition of Zn-3.8 In0.2Sb3 exhibited an ultralow kappa(L) of 0.2 (W m(-1) K-1), an enhanced PF of 1.75 (mW m(-1) K-2), and a remarkable zT value of 1.8 at 698 K. These state-of-the-art thermoelectric properties were attributed to the simultaneous enhancement in phonon scattering and the carrier energy-filtering effect in a unique hierarchical microstructure, in which InSb nanoprecipitates are dispersed in Zn5Sb4In2 coarse grains, and the latter are embedded in the host matrix In-Zn4Sb3. These results opened an avenue for environmentally friendly cost-effective midtemperature thermoelectric materials.en_US
dc.language.isoen_USen_US
dc.subjectthermoelectric materialsen_US
dc.subjectZn4Sb3en_US
dc.subjectInSben_US
dc.subjectthermodynamicsen_US
dc.subjectphase diagramen_US
dc.titleDesigning Environmentally Friendly High-zT Zn4Sb3 via Thermodynamic Routesen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsaem.9b01531en_US
dc.identifier.journalACS APPLIED ENERGY MATERIALSen_US
dc.citation.volume2en_US
dc.citation.issue10en_US
dc.citation.spage7564en_US
dc.citation.epage7571en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000502688800068en_US
dc.citation.woscount0en_US
Appears in Collections:Articles