標題: | Diffuse to fuse EEG spectra - Intrinsic geometry of sleep dynamics for classification |
作者: | Liu, Gi-Ren Lo, Yu-Lun Malik, John Sheu, Yuan-Chung Wu, Hau-Tieng 應用數學系 Department of Applied Mathematics |
關鍵字: | Electroencephalogram;Scattering transform;Sensor fusion;Alternating diffusion map;Multiview diffusion;Sleep stage |
公開日期: | 1-一月-2020 |
摘要: | We propose a novel algorithm for sleep dynamics visualization and automatic annotation by applying diffusion geometry based sensor fusion algorithm to fuse spectral information from two electroencephalograms (EEG). The diffusion geometry approach helps organize the nonlinear dynamical structure hidden in the EEG signal. The visualization is achieved by the nonlinear dimension reduction capability of the chosen diffusion geometry algorithms. For the automatic annotation purpose, the support vector machine is trained to predict the sleep stage. The prediction performance is validated on a publicly available benchmark database, Physionet Sleep-EDF [extended] SC* (SC = Sleep Cassette) and ST* (ST = Sleep Telemetry), with the leave-one-subject-out cross validation. When we have a single EEG channel (Fpz-Cz), the overall accuracy, macro F1 and Cohen's kappa achieve 82.72%, 75.91% and 76.1% respectively in Sleep-EDF SC* and 78.63%, 73.58% and 69.48% in Sleep-EDF ST*. This performance is compatible with the state-of-the-art results. When we have two EEG channels (Fpz-Cz and Pz-Oz), the overall accuracy, macro F1 and Cohen's kappa achieve 84.44%, 78.25% and 78.36% respectively in Sleep-EDF SC* and 79.05%, 74.73% and 70.31% in Sleep-EDF ST*. The results suggest the potential of the proposed algorithm in practical applications. (C) 2019 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.bspc.2019.101576 http://hdl.handle.net/11536/153593 |
ISSN: | 1746-8094 |
DOI: | 10.1016/j.bspc.2019.101576 |
期刊: | BIOMEDICAL SIGNAL PROCESSING AND CONTROL |
Volume: | 55 |
起始頁: | 0 |
結束頁: | 0 |
顯示於類別: | 期刊論文 |