完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Kuan-Yuen_US
dc.contributor.authorYang, Shu-Tingen_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2020-02-02T23:54:40Z-
dc.date.available2020-02-02T23:54:40Z-
dc.date.issued2019-11-01en_US
dc.identifier.urihttp://dx.doi.org/10.3390/s19225054en_US
dc.identifier.urihttp://hdl.handle.net/11536/153610-
dc.description.abstractThe maximum power point tracking (MPPT) technique is often used in photovoltaic (PV) systems to extract the maximum power in various environmental conditions. The perturbation and observation (P&O) method is one of the most well-known MPPT methods; however, it may face problems of large oscillations around maximum power point (MPP) or low-tracking efficiency. In this paper, two reinforcement learning-based maximum power point tracking (RL MPPT) methods are proposed by the use of the Q-learning algorithm. One constructs the Q-table and the other adopts the Q-network. These two proposed methods do not require the information of an actual PV module in advance and can track the MPP through offline training in two phases, the learning phase and the tracking phase. From the experimental results, both the reinforcement learning-based Q-table maximum power point tracking (RL-QT MPPT) and the reinforcement learning-based Q-network maximum power point tracking (RL-QN MPPT) methods have smaller ripples and faster tracking speeds when compared with the P&O method. In addition, for these two proposed methods, the RL-QT MPPT method performs with smaller oscillation and the RL-QN MPPT method achieves higher average power.en_US
dc.language.isoen_USen_US
dc.subjectmaximum power point tracking (MPPT)en_US
dc.subjectphotovoltaic (PV) systemen_US
dc.subjectreinforcement learningen_US
dc.subjectQ-learningen_US
dc.subjectQ-networken_US
dc.titleMaximum Power Point Tracking of Photovoltaic System Based on Reinforcement Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s19225054en_US
dc.identifier.journalSENSORSen_US
dc.citation.volume19en_US
dc.citation.issue22en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000503381500232en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文