完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWei, Pai-Chunen_US
dc.contributor.authorLiao, Chien-Nengen_US
dc.contributor.authorWu, Hsin-Jayen_US
dc.contributor.authorYang, Dongwangen_US
dc.contributor.authorHe, Jianen_US
dc.contributor.authorBiesold-McGee, Gill V.en_US
dc.contributor.authorLiang, Shuangen_US
dc.contributor.authorYen, Wan-Tingen_US
dc.contributor.authorTang, Xinfengen_US
dc.contributor.authorYeh, Jien-Weien_US
dc.contributor.authorLin, Zhiqunen_US
dc.contributor.authorHe, Jr-Hauen_US
dc.date.accessioned2020-03-02T03:23:25Z-
dc.date.available2020-03-02T03:23:25Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn0935-9648en_US
dc.identifier.urihttp://dx.doi.org/10.1002/adma.201906457en_US
dc.identifier.urihttp://hdl.handle.net/11536/153716-
dc.description.abstractThermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials. Entropy engineering is successfully implemented in half-Huesler and IV-VI compounds. In Zintl phases and skutterudites, the efficacy of phase-boundary mapping is demonstrated through unraveling the profound relations among chemical compositions, mutual solubilities of constituent elements, phase instability, microstructures, and resulting TE properties at the operation temperatures. Attention is also given to liquid-like TE materials that exhibit lattice thermal conductivity at lower than the amorphous limit due to intensive mobile ion disorder and reduced vibrational entropy. To conclude, an outlook on the development of next-generation TE materials in line with these thermodynamic routes is given.en_US
dc.language.isoen_USen_US
dc.subjecthigh-entropy alloysen_US
dc.subjectliquid-like thermoelectricsen_US
dc.subjectphase-boundary mappingen_US
dc.subjectthermodynamicsen_US
dc.subjectthermoelectricsen_US
dc.titleThermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performanceen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/adma.201906457en_US
dc.identifier.journalADVANCED MATERIALSen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000512712400001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文