Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, F. A.en_US
dc.contributor.authorChiang, C. H.en_US
dc.contributor.authorLo, M. C.en_US
dc.contributor.authorWu, J. S.en_US
dc.date.accessioned2020-03-02T03:23:26Z-
dc.date.available2020-03-02T03:23:26Z-
dc.date.issued2020-02-01en_US
dc.identifier.issn1727-7191en_US
dc.identifier.urihttp://dx.doi.org/10.1017/jmech.2019.9en_US
dc.identifier.urihttp://hdl.handle.net/11536/153720-
dc.description.abstractThis study proposed the application of a novel immersed boundary method (IBM) for the treatment of irregular geometries using Cartesian computational grids for high speed compressible gas flows modelled using the unsteady Euler equations. Furthermore, the method is accelerated through the use of multiple Graphics Processing Units - specifically using Nvidia's CUDA together with MPI - due to the computationally intensive nature associated with the numerical solution to multi-dimensional continuity equations. Due to the high degree of locality required for efficient multiple GPU computation, the Split Harten-Lax-van-Leer (SHLL) scheme is employed for vector splitting of fluxes across cell interfaces. NVIDIA visual profiler shows that our proposed method having a computational speed of 98.6 GFLOPS and 61% efficiency based on the Roofline analysis that provides the theoretical computing speed of reaching 160 GLOPS with an average 2.225 operations/byte. To demonstrate the validity of the method, results from several benchmark problems covering both subsonic and supersonic flow regimes are presented. Performance testing using 96 GPU devices demonstrates a speed up of 89 times that of a single GPU (i.e. 92% efficiency) for a benchmark problem employing 48 million cells. Discussions regarding communication overhead and parallel efficiency for varying problem sizes are also presented.en_US
dc.language.isoen_USen_US
dc.subjectEuler equationsen_US
dc.subjectFinite volume methoden_US
dc.subjectImmersed boundary methoden_US
dc.subjectGPUen_US
dc.titleDevelopment of a Parallel Explicit Finite-Volume Euler Equation Solver using the Immersed Boundary Method with Hybrid MPI-CUDA Paradigmen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/jmech.2019.9en_US
dc.identifier.journalJOURNAL OF MECHANICSen_US
dc.citation.volume36en_US
dc.citation.issue1en_US
dc.citation.spage87en_US
dc.citation.epage102en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000512987900008en_US
dc.citation.woscount0en_US
Appears in Collections:Articles