完整後設資料紀錄
DC 欄位語言
dc.contributor.authorXiao, Liangen_US
dc.contributor.authorZhang, Hailuen_US
dc.contributor.authorXiao, Yilinen_US
dc.contributor.authorWan, Xiaoyueen_US
dc.contributor.authorLiu, Sicongen_US
dc.contributor.authorWang, Li-Chunen_US
dc.contributor.authorPoor, H. Vincenten_US
dc.date.accessioned2020-03-02T03:23:26Z-
dc.date.available2020-03-02T03:23:26Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1536-1276en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TWC.2019.2945951en_US
dc.identifier.urihttp://hdl.handle.net/11536/153726-
dc.description.abstractThe dense deployment of small cells in 5G cellular networks raises the issue of controlling downlink inter-cell interference under time-varying channel states. In this paper, we propose a reinforcement learning based power control scheme to suppress downlink inter-cell interference and save energy for ultra-dense small cells. This scheme enables base stations to schedule the downlink transmit power without knowing the interference distribution and the channel states of the neighboring small cells. A deep reinforcement learning based interference control algorithm is designed to further accelerate learning for ultra-dense small cells with a large number of active users. Analytical convergence performance bounds including throughput, energy consumption, inter-cell interference, and the utility of base stations are provided and the computational complexity of our proposed scheme is discussed. Simulation results show that this scheme optimizes the downlink interference control performance after sufficient power control instances and significantly increases the network throughput with less energy consumption compared with a benchmark scheme.en_US
dc.language.isoen_USen_US
dc.subjectPower controlen_US
dc.subjectDownlinken_US
dc.subjectThroughputen_US
dc.subjectMicrocell networksen_US
dc.subjectSignal to noise ratioen_US
dc.subjectUltra-dense small cellsen_US
dc.subjectinterference controlen_US
dc.subjectpower controlen_US
dc.subjectreinforcement learningen_US
dc.titleReinforcement Learning-Based Downlink Interference Control for Ultra-Dense Small Cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TWC.2019.2945951en_US
dc.identifier.journalIEEE TRANSACTIONS ON WIRELESS COMMUNICATIONSen_US
dc.citation.volume19en_US
dc.citation.issue1en_US
dc.citation.spage423en_US
dc.citation.epage434en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000508384000031en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文