完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Y. H.en_US
dc.contributor.authorYu, Y. T.en_US
dc.contributor.authorLai, Y. H.en_US
dc.contributor.authorHsieh, M. X.en_US
dc.contributor.authorChen, Y. F.en_US
dc.date.accessioned2020-03-02T03:23:27Z-
dc.date.available2020-03-02T03:23:27Z-
dc.date.issued2020-01-20en_US
dc.identifier.issn1094-4087en_US
dc.identifier.urihttp://dx.doi.org/10.1364/OE.380567en_US
dc.identifier.urihttp://hdl.handle.net/11536/153733-
dc.description.abstractThe integral representation of the Zernike radial functions is well approximated by applying the Riemann sums with a surprisingly rapid convergence. The errors of the Riemann sums are found to averagely be not exceed 3 x 10(-14), 3.3 x 10(-14), and 1.8 x 10(-13) for the radial order up to 30, 50, and 100, respectively. Moreover, a parallel algorithm based on the Riemann sums is proposed to directly generate a set of radial functions. With the aid of the graphics processing units (GPUs), the algorithm shows an acceleration ratio up to 200-fold over the traditional CPU computation. The fast generation for a set of Zernike radial polynomials is expected to be valuable in further applications, such as the aberration analysis and the pattern recognition. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreementen_US
dc.language.isoen_USen_US
dc.titleIntegral-based parallel algorithm for the fast generation of the Zernike polynomialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1364/OE.380567en_US
dc.identifier.journalOPTICS EXPRESSen_US
dc.citation.volume28en_US
dc.citation.issue2en_US
dc.citation.spage936en_US
dc.citation.epage947en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000513232200010en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文