完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Eric Juweien_US
dc.contributor.authorYoung, Ku-Youngen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2020-03-02T03:23:30Z-
dc.date.available2020-03-02T03:23:30Z-
dc.date.issued2019-12-01en_US
dc.identifier.urihttp://dx.doi.org/10.3390/app9235078en_US
dc.identifier.urihttp://hdl.handle.net/11536/153767-
dc.description.abstractAs a major cause of vehicle accidents, the prevention of drowsy driving has received increasing public attention. Precisely identifying the drowsy state of drivers is difficult since it is an ambiguous event that does not occur at a single point in time. In this paper, we use an electroencephalography (EEG) image-based method to estimate the drowsiness state of drivers. The driver's EEG measurement is transformed into an RGB image that contains the spatial knowledge of the EEG. Moreover, for considering the temporal behavior of the data, we generate these images using the EEG data over a sequence of time points. The generated EEG images are passed into a convolutional neural network (CNN) to perform the prediction task. In the experiment, the proposed method is compared with an EEG image generated from a single data time point, and the results indicate that the approach of combining EEG images in multiple time points is able to improve the performance for drowsiness prediction.en_US
dc.language.isoen_USen_US
dc.subjectelectroencephalographyen_US
dc.subjectdeep learningen_US
dc.subjectdriving fatigueen_US
dc.subjectfeature extractionen_US
dc.subjectconvolutional neural networken_US
dc.titleTemporal EEG Imaging for Drowsy Driving Predictionen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app9235078en_US
dc.identifier.journalAPPLIED SCIENCES-BASELen_US
dc.citation.volume9en_US
dc.citation.issue23en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000509476600100en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文