Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, E-Wenen_US
dc.contributor.authorLiaw, Peter K.en_US
dc.date.accessioned2020-03-02T03:23:32Z-
dc.date.available2020-03-02T03:23:32Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn0883-7694en_US
dc.identifier.urihttp://dx.doi.org/10.1557/mrs.2019.257en_US
dc.identifier.urihttp://hdl.handle.net/11536/153807-
dc.description.abstractTougher, lighter, and more formable and machinable metals for broader ranges of applications at higher temperatures are needed now more than ever. High-performance computing, high-resolution microscopy, and advanced spectroscopy methods, including neutrons and synchrotron x-rays, together with advances in metallurgy and metal mixology, reveal the potential of multicomponent advanced metals, such as multicomponent bulk metallic glasses and advanced high-entropy alloys. The development of new experimental approaches relates bulk properties and voxel-associated optimized properties throughout structures with high resolution. The correlations from in situ measurements greatly improve crystal plasticity-based models. This issue of MRS Bulletin overviews recent progress in the field, and this article highlights the importance of these new perspectives. The latest progress and directions in the science and technology for prospective high-temperature metals for structural applications are reported.en_US
dc.language.isoen_USen_US
dc.titleHigh-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1557/mrs.2019.257en_US
dc.identifier.journalMRS BULLETINen_US
dc.citation.volume44en_US
dc.citation.issue11en_US
dc.citation.spage847en_US
dc.citation.epage853en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000510728800007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles