Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yu-Jhenen_US
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorTseng, Vincent S.en_US
dc.contributor.authorHu, Yu-Fengen_US
dc.contributor.authorChen, Shih-Annen_US
dc.date.accessioned2020-03-02T03:23:53Z-
dc.date.available2020-03-02T03:23:53Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0848-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/153836-
dc.description.abstractThe 12-lead Electrocardiography(ECG) is the gold standard in diagnosing cardiovascular diseases, but most previous studies focused on 1-lead or 2-lead ECG. This work uses a large data set, comprising 7,704 12-lead ECG samples, as the data source, and the goal is to develop a classification model for six common types of urgent arrhythmias. We consider the characteristics of multivariate time-series data to design a novel deep learning model, combining convolutional neural network (CNN) and long short-term memory (LSTM) to learn feature representations as well as the temporal relationship between the latent features. The experimental results indicate that the proposed model achieves promising results and outperforms the other alternatives. We also provide brief analysis about the proposed model.en_US
dc.language.isoen_USen_US
dc.subject12-lead ECGen_US
dc.subjectClassification Modelen_US
dc.subjectDeep Learningen_US
dc.subjectCNNen_US
dc.subjectLSTMen_US
dc.titleLarge-scale Classification of 12-lead ECG with Deep Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000508002200011en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper