Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhoa, Frederick Kin Hingen_US
dc.contributor.authorLai, Hsin-Yien_US
dc.contributor.authorChang, Livia Lin-Hsuanen_US
dc.contributor.authorHonda, Keisukeen_US
dc.date.accessioned2020-03-02T03:23:53Z-
dc.date.available2020-03-02T03:23:53Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-88-3381-118-5en_US
dc.identifier.issn2175-1935en_US
dc.identifier.urihttp://hdl.handle.net/11536/153837-
dc.description.abstractTraditional wisdom always suggests that some subjects have strong relationships, while others are almost mutual independent. However. there is a lack of quantitative approach to formulate these relationships in a systematic and unbiased way. In this work, we train a classification machine via deep learning to determine whether two subject types are independent based on the citation information from the Web of Science database. This machine not only achieves very high accuracy in estimating the dependency among subject types in the database, but also is able to predict the dependency when one or both subject types do not exist in the database.en_US
dc.language.isoen_USen_US
dc.subjectDeep Learningen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectClassificationen_US
dc.subjectWeb of Scienceen_US
dc.subjectDependencyen_US
dc.titleA Deep-Learning Approach to Determine the Dependency between Two Subject Types in the Web of Scienceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2019), VOL Ien_US
dc.citation.spage1329en_US
dc.citation.epage1338en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000508217900134en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper