Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalanov, Zalmanen_US
dc.contributor.authorMuzychuk, Mikhailen_US
dc.contributor.authorWu, Hao-pinen_US
dc.date.accessioned2020-05-05T00:01:27Z-
dc.date.available2020-05-05T00:01:27Z-
dc.date.issued2020-05-01en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2019.12.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/153893-
dc.description.abstractGiven a finite group G and two unitary G-representations V and W, possible restrictions on topological degrees of equivariant maps between representation spheres S(V) and S(W) are usually expressed in a form of congruences modulo the greatest common divisor of lengths of orbits in S(V) (denoted by alpha(V)). Effective applications of these congruences is limited by answers to the following questions: (i) under which conditions, is alpha(V) > 1? and (ii) does there exist an equivariant map with the degree easy to calculate? In the present paper, we address both questions. We show that alpha(V) > 1 for each irreducible non-trivial C[G]-module if and only if G is solvable. This provides a new solvability criterion for finite groups. For non-solvable groups, we use 2-transitive actions to construct complex representations with non-trivial a-characteristic. Regarding the second question, we suggest a class of Norton algebras without 2-nilpotents giving rise to equivariant quadratic maps, which admit an explicit formula for the degree. (C) 2019 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectTopological degreeen_US
dc.subjectEquivariant mapen_US
dc.subjectOrdinary representations of finite groupsen_US
dc.subjectSolvable groupsen_US
dc.subjectDoubly transitive groupsen_US
dc.subjectNorton algebrasen_US
dc.titleOn algebraic problems behind the Brouwer degree of equivariant mapsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2019.12.009en_US
dc.identifier.journalJOURNAL OF ALGEBRAen_US
dc.citation.volume549en_US
dc.citation.spage45en_US
dc.citation.epage77en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000513298900003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles