Full metadata record
DC FieldValueLanguage
dc.contributor.authorBan, Jung-Chaoen_US
dc.contributor.authorChang, Chih-Hungen_US
dc.contributor.authorHuang, Nai-Zhuen_US
dc.date.accessioned2020-05-05T00:01:29Z-
dc.date.available2020-05-05T00:01:29Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127420500157en_US
dc.identifier.urihttp://hdl.handle.net/11536/153925-
dc.description.abstractIt has been demonstrated that excitable media with a tree structure performed better than other network topologies, therefore it is natural to consider neural networks defined on Cayley trees. The investigation of a symbolic space called tree-shift of finite type is important when it comes to the discussion of the equilibrium solutions of neural networks on Cayley trees. Entropy is a frequently used invariant for measuring the complexity of a system, and constant entropy for an open set of coupling weights between neurons means that the specific network is stable. This paper gives a complete characterization of entropy spectrum of neural networks on Cayley trees and reveals whether the entropy bifurcates when the coupling weights change.en_US
dc.language.isoen_USen_US
dc.subjectNeural networksen_US
dc.subjectlearning problemen_US
dc.subjectCayley treeen_US
dc.subjectseparation propertyen_US
dc.subjectentropy spectrumen_US
dc.subjectminimal entropyen_US
dc.titleEntropy Bifurcation of Neural Networks on Cayley Treesen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127420500157en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume30en_US
dc.citation.issue1en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000515153900017en_US
dc.citation.woscount0en_US
Appears in Collections:Articles