完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yi-Wenen_US
dc.contributor.authorTsai, Yi-Hsuanen_US
dc.contributor.authorLin, Yen-Yuen_US
dc.contributor.authorYang, Ming-Hsuanen_US
dc.date.accessioned2020-05-05T00:01:30Z-
dc.date.available2020-05-05T00:01:30Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn0920-5691en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11263-019-01224-xen_US
dc.identifier.urihttp://hdl.handle.net/11536/153936-
dc.description.abstractIn order to learn video object segmentation models, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into three tasks: (1) refining the responses with fully-connected CRFs, (2) solving a submodular function for selecting object-like segments, and (3) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between three tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets demonstrate that the proposed method performs favorably against the state-of-the-art algorithms.en_US
dc.language.isoen_USen_US
dc.subjectVideo object segmentationen_US
dc.subjectTransfer learningen_US
dc.subjectWeakly-supervised learningen_US
dc.titleVOSTR: Video Object Segmentation via Transferable Representationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11263-019-01224-xen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF COMPUTER VISIONen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000515808300003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文