Full metadata record
DC FieldValueLanguage
dc.contributor.authorLu, Jia-Hsunen_US
dc.contributor.authorChen, Chuanen_US
dc.contributor.authorHuang, Chihpinen_US
dc.contributor.authorLeu, Shao-Yuanen_US
dc.contributor.authorLee, Duu-Jongen_US
dc.date.accessioned2020-05-05T00:01:31Z-
dc.date.available2020-05-05T00:01:31Z-
dc.date.issued2020-05-01en_US
dc.identifier.issn0960-8524en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.biortech.2020.122933en_US
dc.identifier.urihttp://hdl.handle.net/11536/153951-
dc.description.abstractThe aim of this work was to study sequential batch fermentation of glucose with a biological consortium amended with nine different biochars or with an activated carbon. The glucose fermentation was enhanced by carbon amendment, with activated carbon being more effective than biochars as cell carriers and electron conductors between functional species. The volatile fatty acid distributions were shifted in the consumption of the produced H-2 and CO2. The types of biochars were irrelevant to glucose glycolysis and the subsequent H-2 and CO2 consumption reactions. Biofilm growth affects the detailed mechanisms occurred in fermentation broth to the yielded volatile fatty acid distributions.en_US
dc.language.isoen_USen_US
dc.subjectBiocharen_US
dc.subjectVolatile fatty acidsen_US
dc.subjectFermentative consortiumen_US
dc.subjectSyntrophyen_US
dc.titleGlucose fermentation with biochar amended consortium: Sequential fermentationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.biortech.2020.122933en_US
dc.identifier.journalBIORESOURCE TECHNOLOGYen_US
dc.citation.volume303en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department環境工程研究所zh_TW
dc.contributor.departmentInstitute of Environmental Engineeringen_US
dc.identifier.wosnumberWOS:000516839600024en_US
dc.citation.woscount1en_US
Appears in Collections:Articles