Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Hsin-Yien_US
dc.contributor.authorLing, Yu-Hsiangen_US
dc.date.accessioned2020-05-05T00:01:33Z-
dc.date.available2020-05-05T00:01:33Z-
dc.date.issued2020-02-01en_US
dc.identifier.issn0939-1533en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00419-019-01614-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/153984-
dc.description.abstractThe objective of this work is to investigate the magnetoelectricity (ME) of an ellipsoidal particulate composite made of piezoelectric and piezomagnetic phases. We employ a micromechanical model, the Mori-Tanaka mean-field method, to evaluate the effects of crystallographic orientations of the constituents, and the aspect ratio, volume fraction, and orientations of the ellipsoids. We compare this micromechanical solution with those predicted by the finite element analysis, which provides the benchmark results for a periodic array of inclusions. Based on this model, we find the optimal aspect ratio and volume fractions of the inclusion when the ellipsoids are poled along the normal direction. Further, we show that, for the case of CoFe2O4\documentclass[12pt]$$\hbox {BaTiO}_{{3}}$$\end{document} ellipsoidal particulate composite, the ME voltage coefficient can be enhanced at the optimal orientation as compared to those at normal cut.en_US
dc.language.isoen_USen_US
dc.subjectMagnetoelectricityen_US
dc.subjectPiezoelectric-piezomagneticen_US
dc.subjectAnisotropyen_US
dc.subjectEllipsoidal particulate compositesen_US
dc.titleAnisotropic multiferroic ellipsoidal particulate compositesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00419-019-01614-0en_US
dc.identifier.journalARCHIVE OF APPLIED MECHANICSen_US
dc.citation.volume90en_US
dc.citation.issue2en_US
dc.citation.spage369en_US
dc.citation.epage383en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000518297800008en_US
dc.citation.woscount0en_US
Appears in Collections:Articles