完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLo, Shao-Yuanen_US
dc.contributor.authorHang, Hsueh-Mingen_US
dc.contributor.authorChan, Sheng-Weien_US
dc.contributor.authorLin, Jing-Jhihen_US
dc.date.accessioned2020-05-05T00:01:56Z-
dc.date.available2020-05-05T00:01:56Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-1817-8en_US
dc.identifier.issn2163-3517en_US
dc.identifier.urihttp://hdl.handle.net/11536/154001-
dc.description.abstractLane detection plays an important role in a self-driving vehicle. Several studies leverage a semantic segmentation network to extract robust lane features, but few of them can distinguish different types of lanes. In this paper, we focus on the problem of multi-class lane semantic segmentation. Based on the observation that the lane is a small-size and narrow-width object in a road scene image, we propose two techniques, Feature Size Selection (FSS) and Degressive Dilation Block (DD Block). The FSS allows a network to extract thin lane features using appropriate feature sizes. To acquire fine-grained spatial information, the DD Block is made of a series of dilated convolutions with degressive dilation rates. Experimental results show that the proposed techniques provide obvious improvement in accuracy, while they achieve the same or faster inference speed compared to the baseline system, and can run at real-time on high-resolution images.en_US
dc.language.isoen_USen_US
dc.subjectmulti-class lanesen_US
dc.subjectsemantic segmentationen_US
dc.subjectreal-timeen_US
dc.subjectself-drivingen_US
dc.titleMulti-Class Lane Semantic Segmentation using Efficient Convolutional Networksen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE 21ST INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2019)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000520406300002en_US
dc.citation.woscount0en_US
顯示於類別:會議論文