Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Hsiang-Yunen_US
dc.contributor.authorCho, Yu-Yunen_US
dc.contributor.authorHsu, Shun-Chiehen_US
dc.contributor.authorHuang, Yu-Mingen_US
dc.contributor.authorWang, Shou-Weien_US
dc.contributor.authorHuang, Huang-Hsiungen_US
dc.contributor.authorWu, Chao-Hsinen_US
dc.contributor.authorYeh, Yen-Weien_US
dc.contributor.authorLu, Yun-Tingen_US
dc.contributor.authorKuo, Hao-Chungen_US
dc.contributor.authorLin, Chien-Chungen_US
dc.date.accessioned2020-05-05T00:01:57Z-
dc.date.available2020-05-05T00:01:57Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0615-1en_US
dc.identifier.issn2374-0140en_US
dc.identifier.urihttp://hdl.handle.net/11536/154009-
dc.description.abstractAn oxide aperture strained quantum well VCSEL model was built based on measured results. The indium composition of MQW was changed to maximize the frequency response. The simulation result shows that the bandwidth can be improved and reach 30.88GHz.en_US
dc.language.isoen_USen_US
dc.subjectQuantum-wellen_US
dc.subject-wire and -dot devicesen_US
dc.subjectBragg reflectoren_US
dc.subjectLaseren_US
dc.subjectfiberen_US
dc.titleSimulation Model of Oxide-Aperture Strain Quantum Well VCSELen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE PHOTONICS CONFERENCE (IPC)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電系統研究所zh_TW
dc.contributor.department光電工程研究所zh_TW
dc.contributor.departmentInstitute of Photonic Systemen_US
dc.contributor.departmentInstitute of EO Enginerringen_US
dc.identifier.wosnumberWOS:000520481500087en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper