完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Yu-Deen_US
dc.contributor.authorWang, Kai-Yenen_US
dc.contributor.authorHo, Yun-Lungen_US
dc.contributor.authorHe, Chang-Yuanen_US
dc.contributor.authorFang, Wai-Chien_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5090-0617-5en_US
dc.identifier.issn2163-4025en_US
dc.identifier.urihttp://hdl.handle.net/11536/154035-
dc.description.abstractIn this work, we proposed an edge AI CNN chip design for EEG-based affective Computing system by using TSMC 28nm technology. To improve the performance, Artifact Subspace Reconstruction (ASR) and Short-Time Fourier Transform (STFT) were used for our signal pre-processing and features extraction. The time-frequency EEG feature map was obtained with a multi-channel Differential Asymmetry (DASM) method on 6 EEG channels: FP1, FP2, F3, F4, T7, and T8 according to 10-20 system. The total power consumption of the proposed CNN chip was 71.6mW in training mode and 29.5mW in testing mode. We used 32 subjects data from the DEAP database to validate the proposed design, achieving mean accuracies of 83.7%, 84.5%, and 70.51% for Valence-Arousal binary classification and quaternary classification respectively, showing significant performance improvement over the current related works.en_US
dc.language.isoen_USen_US
dc.subjectEmotion Recognitionen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDeep Learning Chipen_US
dc.subjectOn-chip Learningen_US
dc.subjectReal-time EEG Systemen_US
dc.subjectHuman-Computer Interactionen_US
dc.titleAn Edge AI System-on-Chip Design with Customized Convolutional-Neural-Network Architecture for Real-time EEG-Based Affective Computing Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2019)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000521751500067en_US
dc.citation.woscount0en_US
顯示於類別:會議論文