完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Yi-Yuen_US
dc.contributor.authorLin, Wei-Yuen_US
dc.contributor.authorLi, Dong-Linen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-6249-6en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/154042-
dc.description.abstractThis paper proposed a modified YOLOv3 which has an extra object depth prediction module for obstacle detection and avoidance. We use a pre-processed KITTI dataset to train the proposed, unified model for (i) object detection and (ii) depth prediction and use the AirSim flight simulator to generate synthetic aerial images to verify that our model can be applied in different data domains. Experimental results show that the proposed model compares favorably with other depth map prediction methods in terms of accuracy in the prediction of object depth for pre-processed KITTI dataset, while the unified approach can actually improve both (i) and (ii) at the same time.en_US
dc.language.isoen_USen_US
dc.subjectDeep learningen_US
dc.subjectYOLOv3en_US
dc.subjectobject detectionen_US
dc.subjectdepth predictionen_US
dc.subjectKITTI dataseten_US
dc.titleDEEP LEARNING-BASED OBSTACLE DETECTION AND DEPTH ESTIMATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage1635en_US
dc.citation.epage1639en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電腦視覺研發中心zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentComputer Vision Research Centeren_US
dc.identifier.wosnumberWOS:000521828601153en_US
dc.citation.woscount0en_US
顯示於類別:會議論文