完整後設資料紀錄
DC 欄位語言
dc.contributor.authorAlexandre, Daviden_US
dc.contributor.authorChang, Chih-Pengen_US
dc.contributor.authorPeng, Wen-Hsiaoen_US
dc.contributor.authorHang, Hsueh-Mingen_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-6249-6en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/154043-
dc.description.abstractThis paper introduces the notion of soft bits to address the rate-distortion optimization for learning-based image compression. Recent methods for such compression train an autoencoder end-to-end with an objective to strike a balance between distortion and rate. They are faced with the zero gradient issue due to quantization and the difficulty of estimating the rate accurately. Inspired by soft quantization, we represent quantization indices of feature maps with differentiable soft bits. This allows us to couple tightly the rate estimation with context-adaptive binary arithmetic coding. It also provides a differentiable distortion objective function. Experimental results show that our approach achieves the state-of-the-art compression performance among the learning-based schemes in terms of MS-SSIM and PSNR.en_US
dc.language.isoen_USen_US
dc.subjectAutoencoderen_US
dc.subjectDeep Learningen_US
dc.subjectImage Compressionen_US
dc.subjectSoft Bitsen_US
dc.titleLEARNED IMAGE COMPRESSION WITH SOFT BIT-BASED RATE-DISTORTION OPTIMIZATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage1715en_US
dc.citation.epage1719en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000521828601169en_US
dc.citation.woscount0en_US
顯示於類別:會議論文