完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Kuan-Chouen_US
dc.contributor.authorLin, Guan-Tingen_US
dc.contributor.authorLin, Che-Tsungen_US
dc.contributor.authorGuo, Jiun-Inen_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-6249-6en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/154045-
dc.description.abstractIn this paper, we propose a deep learning system to localize and recognize Chinese texts in scenes with signage and road marks through 3D convolutional neural network. The proposed system adopts YOLO for detecting target location and exploits 3D convolutional neural network for recognizing the contents. The proposed design outperforms the existing designs based on LSTM and achieves real-time processing performance, which is feasible to be implemented on embedded platforms. The proposed system reaches over 90% accuracy in recognizing Chinese texts on bird's-eye viewing road marks in a self-driving vehicle equipped with a fisheye camera. In addition, this system can achieve 20 fps execution speed with NVIDIA DIGITS DevBox with 1080Ti GPU, which is fast enough for autonomous driving applications.en_US
dc.language.isoen_USen_US
dc.subject3D CNNsen_US
dc.subjectRoad marks detectionen_US
dc.subjectChinese texts recognitionen_US
dc.titleRECOGNIZING CHINESE TEXTS WITH 3D CONVOLUTIONAL NEURAL NETWORKen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage2120en_US
dc.citation.epage2123en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000521828602049en_US
dc.citation.woscount0en_US
顯示於類別:會議論文