Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Yan-Yingen_US
dc.contributor.authorCheng, Hsin-Jungen_US
dc.contributor.authorLiu, Yenen_US
dc.contributor.authorShen, Chih-Tsungen_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-6249-6en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/154048-
dc.description.abstractWe design a convolutional neural network with homography-augmented data to deal with facial emotion recognition applications. Different to other convolutional neural networks, our AsicNet is well-designed for embedded CPU and even aiming for ASIC, such as Intel Movidius VPU. We adjust the architecture of our AsicNet and train our AsicNet on the GPU server, meanwhile we consider the computation costs of embedded systems and ASICs. Moreover, we reconsider the deep learning flow and train the homography-augmented data so as to reach higher accuracy. Experimental results on both FER2013 anf JAFFE face datasets show that our AsicNet can not only have high accuracy (72:42% on FER2013; 99:82% on JAFFE) as compared to the state-of-arts but also reach 41.22 millisecond (24.26 FPS) on the embedded CPU and 15.25 millisecond (65.57 FPS) on Intel Movidius VPU to tell the facial emotion from a face image.en_US
dc.language.isoen_USen_US
dc.subjectFace Recognitionen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectASICen_US
dc.subjectVPUen_US
dc.titleEDGE-COMPUTING CONVOLUTIONAL NEURAL NETWORK WITH HOMOGRAPHY-AUGMENTED DATA FOR FACIAL EMOTION RECOGNITIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage3287en_US
dc.citation.epage3291en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000521828603085en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper