完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Yu-Chengen_US
dc.contributor.authorTan, Daniel Stanleyen_US
dc.contributor.authorChen, Jyh-Chengen_US
dc.contributor.authorCheng, Wen-Huangen_US
dc.contributor.authorHua, Kai-Lungen_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-6249-6en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/154049-
dc.description.abstractWe propose a novel network architecture called Residual Attention U-Net (ResAttU-Net) for segmenting hepatic lesions. Our model incorporates residual blocks that can extract more complex features as compared with traditional convolutional layers combined with a skip-connection attention module that learns to focus on the relevant features for the task of hepatic lesions segmentation. Moreover, we train our model using an adaptive weighted dice loss that prioritizes the pixels of the tumor class over the pixels of the background class. We evaluate our model on the MICCAI Liver Tumor Segmentation (LiTS) benchmark dataset. Our experimental results show that our method significantly improves upon several state-of-the-art baselines for hepatic lesion or liver tumor segmentation.en_US
dc.language.isoen_USen_US
dc.subjectCT image segmentationen_US
dc.subjectresidual blocken_US
dc.subjectattention moduleen_US
dc.subjecthepatic lesion factoren_US
dc.titleSEGMENTING HEPATIC LESIONS USING RESIDUAL ATTENTION U-NET WITH AN ADAPTIVE WEIGHTED DICE LOSSen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage3322en_US
dc.citation.epage3326en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000521828603092en_US
dc.citation.woscount0en_US
顯示於類別:會議論文