完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Jwo-Yuhen_US
dc.contributor.authorHuang, Liang-Chien_US
dc.contributor.authorYang, Ming-Hsunen_US
dc.contributor.authorChang, Ling-Huaen_US
dc.contributor.authorLiu, Chun-Hungen_US
dc.date.accessioned2020-05-05T00:01:59Z-
dc.date.available2020-05-05T00:01:59Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-6249-6en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/154050-
dc.description.abstractBuilt on the sparse representation framework, sparse subspace clustering (SSC) received considerable attention in the recent years. Conventional SSC employs. l(1)-minimization based sparse regression for neighbor identification on a sample-by-sample basis, and is unaware of the neighbor information revealed by those already computed sparse representation vectors. To rid this drawback, this paper proposes a weighted. l(1)-minimization based sparse regression method, and an associated data ordering rule able to reflect the reliability of neighbor information for further enhancing the clustering accuracy. The selection of weighting coefficients for SSC is also discussed. Computer simulations using both the synthesis and real data are provided to evidence the effectiveness of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectSubspace clusteringen_US
dc.subjectsparse representationen_US
dc.subjectcompressive sensingen_US
dc.titleSPARSE SUBSPACE CLUSTERING WITH SEQUENTIALLY ORDERED AND WEIGHTED L1-MINIMIZATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage3387en_US
dc.citation.epage3391en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000521828603105en_US
dc.citation.woscount0en_US
顯示於類別:會議論文