完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Lung-Pinen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorChang, Yen-Lingen_US
dc.date.accessioned2020-05-05T00:02:00Z-
dc.date.available2020-05-05T00:02:00Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-4666-9en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://hdl.handle.net/11536/154060-
dc.description.abstractDue to high capacity and complex scheduling activities, a HPC platform often creates resource fragments with low usability. This paper develops a novel fragment-aware scheduling approach which improves system utilization by fitting elastic lightweight tasks to the fragments of resources dynamically. The new approach employs a threshold to determine the balancing factor between the length of tasks and the degree of granularity of the resource fragments. We employ the PPO reinforcement learning approach to train a neural network that can compute the threshold precisely. With the threshold that is adaptive to the changing system states, the PPO-based scheduler is able to utilize the idle resources and maximize the execution success rate of the tasks.en_US
dc.language.isoen_USen_US
dc.subjectHigh-performance computingen_US
dc.subjectmalleable tasken_US
dc.subjectreinforcement learningen_US
dc.subjectschedulingen_US
dc.titleReinforcement Learning based Fragment-Aware Scheduling for High Utilization HPC Platformsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000524126200074en_US
dc.citation.woscount0en_US
顯示於類別:會議論文