完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Tung-Yien_US
dc.contributor.authorHsueh, Chu-Hsuanen_US
dc.contributor.authorLin, You-Hsuanen_US
dc.contributor.authorChu, Yeong-Jia Rogeren_US
dc.contributor.authorHsueh, Bo-Yangen_US
dc.contributor.authorWu, I-Chenen_US
dc.date.accessioned2020-05-05T00:02:00Z-
dc.date.available2020-05-05T00:02:00Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-4666-9en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://hdl.handle.net/11536/154061-
dc.description.abstractThis paper proposes a deep reinforcement learning algorithm for solving robotic tasks, such as grasping objects. We propose in this paper a combination of cross-entropy optimization (CE) with deep deterministic policy gradient (DDPG). More specifically, where in the CE method, we first sample from a Gaussian distribution with zero as its initial mean, we now set the initial mean to DDPG's output instead. The resulting algorithm is referred to as the DDPG-CE method. Next, to negate the effects of bad samples, we improve on DDPG-CE by substituting the CE component with a weighted CE method, resulting in the DDPG-WCE algorithm. Experiments show that DDPG-WCE achieves a higher success rate on grasping previously unseen objects, than other approaches, such as supervised learning, DDPG, CE, and DDPG-CE.en_US
dc.language.isoen_USen_US
dc.subjectreinforcement learningen_US
dc.subjectroboticsen_US
dc.subjectobject graspingen_US
dc.subjectdeep deterministic policy gradienten_US
dc.subjectcross-entropy methoden_US
dc.titleCombining Deep Deterministic Policy Gradient with Cross-Entropy Methoden_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000524126200080en_US
dc.citation.woscount0en_US
顯示於類別:會議論文