Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Yu-Chengen_US
dc.contributor.authorArul, K. Thanigaien_US
dc.contributor.authorChen, Chi-Liangen_US
dc.contributor.authorChen, Jeng-Lungen_US
dc.contributor.authorChen, Jieen_US
dc.contributor.authorShen, Shaohuaen_US
dc.contributor.authorLu, Ying-Ruen_US
dc.contributor.authorKuo, Chun-Hongen_US
dc.contributor.authorDong, Chung-Lien_US
dc.contributor.authorChou, Wu-Chingen_US
dc.date.accessioned2020-05-05T00:02:16Z-
dc.date.available2020-05-05T00:02:16Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn0169-4332en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.apsusc.2020.145907en_US
dc.identifier.urihttp://hdl.handle.net/11536/154076-
dc.description.abstractGraphitic carbon nitride (g-C3N4) has attracted considerable attention with regard to its use in photocatalytic solar hydrogen production by the splitting of water. High charge carrier recombination critically limits the photocatalytic activity of g-C3N4. Plasmonic metal nanoparticles that can generate localized surface plasmon resonance (LSPR) have been suggested to enhance the harvesting of visible light and to improve water splitting efficiency. However, direct contact between metal nanoparticles and g-C3N4 reduces the hydrogen generation efficiency owing to energy loss by Forster resonance energy transfer (FRET), which competes with plasmon resonance energy transfer (PRET). Decorating g-C3N4 with Ag@SiO2 core-shell plasmonic nanoparticles increases its photocatalytic ability. Tuning the size of the SiO2 nanogap can optimize the photocatalytic performance of g-C3N4/Ag@SiO2, which involves a trade-off between PRET and FRET. X-ray absorption spectroscopy (XAS) is utilized to investigate the electronic structure of g-C3N4 and its modulation with Ag@SiO2. In situ XAS reveals the dynamics of the charge carriers under solar illumination. Analytic results suggest charge redistribution, shifting of the conduction band, modification of the unoccupied states, and consequent improvement in photocatalytic activity by solar illumination. This work sheds light on the effect of LSPR on this photocatalyst with reference to its electronic structure.en_US
dc.language.isoen_USen_US
dc.subjectg-C3N4en_US
dc.subjectLocalized surface plasmon resonanceen_US
dc.subjectX-ray absorption spectroscopyen_US
dc.titleElectronic structures associated with enhanced photocatalytic activity in nanogap-engineered g-C3N4/Ag@SiO2 hybrid nanostructuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apsusc.2020.145907en_US
dc.identifier.journalAPPLIED SURFACE SCIENCEen_US
dc.citation.volume514en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000523185200030en_US
dc.citation.woscount0en_US
Appears in Collections:Articles