完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Liang-Yien_US
dc.contributor.authorKavadiya, Shalineeen_US
dc.contributor.authorHe, Xiangen_US
dc.contributor.authorWang, Wei-Ningen_US
dc.contributor.authorKarakocak, Bedia Begumen_US
dc.contributor.authorLin, Yu-Chihen_US
dc.contributor.authorBerezin, Mikhail Y.en_US
dc.contributor.authorBiswas, Pratimen_US
dc.date.accessioned2020-05-05T00:02:18Z-
dc.date.available2020-05-05T00:02:18Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cej.2019.123450en_US
dc.identifier.urihttp://hdl.handle.net/11536/154106-
dc.description.abstractThis work for the first time reports the promoting effect of strong electronic metal-support interaction (EMSI) in N/TiO2-V-O (V-O: oxygen vacancy) for gas-phase CO2 photoreduction. A novel in-situ surface hydrogenation was developed to prepare hydrogenated N/TiO2-V-O in a continuous, high throughput diffusion flame aerosol reactor. The combined results of various characterization techniques confirmed the presence of EMSI between N and defective TiO2-V-O resulted in the enhanced electronic density of N nanoparticles. Both the modulated electronic structure of N and surface oxygen vacancies simultaneously promoted the activation of surface adsorbed carbon intermediates and facilitated the separation of photogenerated charges, eventually boosting the photocatalytic activity of N/TiO2-V-O. The optimized N/TiO2-V-O demonstrated a high quantum yield of 1.49% with high CH4 selectivity (81%), which rendered 5.8- and 1.2-fold enhancements over its counterparts of TiO2-V-O and N/TiO2. More significantly, the EMSI also played a critical role in preserving the surface metallic Pt-0 and oxygen vacancies, and in sustaining high activity of the Pt/TiO2-V-O, whereas rapid catalytic deactivation are observed for both TiO2-V-O and Pt/TiO2.en_US
dc.language.isoen_USen_US
dc.subjectCO2 reductionen_US
dc.subjectFlame synthesisen_US
dc.subjectHydrogenationen_US
dc.subjectPt/TiO2en_US
dc.subjectStrong electronic metal-support interactionen_US
dc.titleEngineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreductionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cej.2019.123450en_US
dc.identifier.journalCHEMICAL ENGINEERING JOURNALen_US
dc.citation.volume389en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department環境工程研究所zh_TW
dc.contributor.departmentInstitute of Environmental Engineeringen_US
dc.identifier.wosnumberWOS:000519528800059en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文