完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Shih-Yuen_US
dc.contributor.authorPhuoc-Anh Leen_US
dc.contributor.authorYen, Po-Jenen_US
dc.contributor.authorLu, Yi-Chunen_US
dc.contributor.authorSahoo, Sumanta Kumaren_US
dc.contributor.authorCheng, Hao-Wenen_US
dc.contributor.authorChiu, Po-Wenen_US
dc.contributor.authorTseng, Tseung-Yuenen_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.date.accessioned2020-05-05T00:02:18Z-
dc.date.available2020-05-05T00:02:18Z-
dc.date.issued2020-05-10en_US
dc.identifier.issn0013-4686en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.electacta.2020.136043en_US
dc.identifier.urihttp://hdl.handle.net/11536/154109-
dc.description.abstractIn this study, we synthesized new 0.01-2 mu m graphene nanosheet/MnO2WO3(G/MnO2/WO3) architectures through an electrochemically induced cathodic plasma process in a single batch at a lower temperature (70 degrees C) and for a shorter time (2 h) than those required for the syntheses of similar structures when using a hydrothermal method. We first obtained 0.01-1 mu m leaf-like graphene (G) nanosheets, then 0.1-0.3 mu m long and approximately 10 nm diameter petiole-like MnO2 nanowires on the G nanosheets, and finally 0.20-2.0 mu m petal-like WO3 on MnO2/G - thereby forming the G/MnO2/WO3 architectures - as evidenced using scanning electron microscopy and transmission electron microscopy. We deciphered the step-wise reaction mechanism behind the formation of the G/MnO2/WO3 architectures during the plasma process. The high surface area of 291 m(2) g(-1) in the G/MnO2/WO3 architecture was contributed mainly by the G nanosheets, providing a suitable surface area for diffusion of the charge carriers during the charging and discharging process. As a result, an electrode incorporating the G/MnO2/WO3 architectures exhibited an excellent specific capacitance of 620 F g(-1) - 45 and 200% higher than those of G/MnO2 (421 F g(-1)) and G (189 F g(-1)) electrodes, respectively - at a current density of 0.5 A g(-1). Moreover, the G/MnO2/WO3-incorporated electrode exhibited good electrochemical cycling stability, with 90% capacitance retention over 5000 cycles at 1 A g(-1). Such new G/MnO2/WO3 heterojunction structures, not only provide high-performance electrode applications, but also suggest a potential approach toward fabricating other heterojunction structures having high surface areas for energy storage applications. (C) 2020 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCathodic plasma processen_US
dc.subjectSequential synthesesen_US
dc.subjectG/MnO2/WO3 architecturesen_US
dc.subjectSupercapacitoren_US
dc.titleCathodic plasma-induced syntheses of graphene nanosheet/MnO2/WO3 architectures and their use in supercapacitorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.electacta.2020.136043en_US
dc.identifier.journalELECTROCHIMICA ACTAen_US
dc.citation.volume342en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000524987200004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文