Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chun-Liangen_US
dc.contributor.authorKawakami, Naoyaen_US
dc.contributor.authorArafune, Ryuichien_US
dc.contributor.authorMinamitani, Emien_US
dc.contributor.authorTakagi, Noriakien_US
dc.date.accessioned2020-05-05T00:02:25Z-
dc.date.available2020-05-05T00:02:25Z-
dc.date.issued2020-06-03en_US
dc.identifier.issn0953-8984en_US
dc.identifier.urihttp://dx.doi.org/10.1088/1361-648X/ab777den_US
dc.identifier.urihttp://hdl.handle.net/11536/154221-
dc.description.abstractTopological materials have become promising materials for next-generation devices by utilizing their exotic electronic states. Their exotic states caused by spin-orbital coupling usually locate on the surfaces or at the edges. Scanning tunneling spectroscopy (STS) is a powerful tool to reveal the local electronic structures of condensed matters. Therefore, STS provides us with an almost perfect method to access the exotic states of topological materials. In this topical review, we report the current investigations by several methods based on the STS technique for layered topological material from transition metal dichalcogenide Weyl semimetals (WTe2 and MoTe2) to two dimensional topological insulators (layered bismuth and silicene). The electronic characteristics of these layered topological materials are experimentally identified.en_US
dc.language.isoen_USen_US
dc.subjecttopological materialsen_US
dc.subjectscanning tunneling spectroscopyen_US
dc.subjecttransition metal dichalcogenideen_US
dc.subjecttopological insulatorsen_US
dc.subjectbismuthen_US
dc.subjectsiliceneen_US
dc.subjectquasiparticle interferenceen_US
dc.titleScanning tunneling spectroscopy studies of topological materialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1361-648X/ab777den_US
dc.identifier.journalJOURNAL OF PHYSICS-CONDENSED MATTERen_US
dc.citation.volume32en_US
dc.citation.issue24en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000521533500001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles