完整後設資料紀錄
DC 欄位語言
dc.contributor.authorOng, Kian Chuanen_US
dc.contributor.authorLai, Ming-Chihen_US
dc.date.accessioned2020-05-05T00:02:25Z-
dc.date.available2020-05-05T00:02:25Z-
dc.date.issued2020-05-01en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2020.109277en_US
dc.identifier.urihttp://hdl.handle.net/11536/154224-
dc.description.abstractWe develop an immersed boundary projection method (IBPM) based on an unconditionally energy stable scheme to simulate the vesicle dynamics in a viscous fluid. Utilizing the block LU decomposition of the algebraic system, a novel fractional step algorithm is introduced by decoupling all solution variables, including the fluid velocity, fluid pressure, and the elastic tension. In contrast to previous works, the present method preserves both the fluid incompressibility and the interface inextensibility at a discrete level simultaneously. In conjunction with an implicit discretization of the bending force, the present method alleviates the time-step restriction, so the numerical stability is assured by non-increasing total discrete energy during the simulation. The numerical algorithm takes a linearithmic complexity by using preconditioned GMRES and FFT-based solvers. The grid convergence studies confirm the solution variables exhibit first-order convergence rate in L-2-norm. We demonstrate the numerical results of the vesicle dynamics in a quiescent fluid, Poiseuille flow, and shear flow, which are congruent with the results in the literature. (C) 2020 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectImmersed boundary projection methoden_US
dc.subjectFractional step methoden_US
dc.subjectUnconditionally energy stable schemeen_US
dc.subjectInextensible interfaceen_US
dc.subjectBending forceen_US
dc.subjectVesicle dynamicsen_US
dc.titleAn immersed boundary projection method for simulating the inextensible vesicle dynamicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2020.109277en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume408en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000521731200010en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文