完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDu, Lien_US
dc.contributor.authorDu, Yuanen_US
dc.contributor.authorChang, Mau-Chung Franken_US
dc.date.accessioned2020-05-05T00:02:26Z-
dc.date.available2020-05-05T00:02:26Z-
dc.date.issued2020-04-01en_US
dc.identifier.issn1549-7747en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSII.2019.2922657en_US
dc.identifier.urihttp://hdl.handle.net/11536/154241-
dc.description.abstractThis brief presents a novel reconfigurable $K$ -means clustering accelerator that is suitable for integration in both IoT and data center system. The high vector dimension reconfigurability and design cost reduction is achieved through vector-streaming and adaptive overflow control to adapt distance computation using as-needed precision (dynamic 16-bit fixed-point data format). A two-stage shift-bit counted comparator is proposed. It can determine most results through only turning on the shift-bit comparator (3-bit), reducing the power consumption by $7\times $ compared to the direct full dynamic range comparison. Four vectors with two cluster centroids are processed simultaneously. Up to 8-dimension cluster vectors are stored in local buffer to reduce data exchange between the main memory and the processing engine. A prototype accelerator was implemented in TSMC 65 nm. The accelerator occupied 0.26 mm(2) and can support up to 64-D vector clustering. It achieved 31.2M query vectors/s with 41-mW power consumption at 250-MHz clock (cluster number: 2, vector dimension: 64) and an energy efficiency of 0.41 TOPS/W at 30 MHz clock.en_US
dc.language.isoen_USen_US
dc.subjectMachine learningen_US
dc.subjectunsupervised learningen_US
dc.subjectK-meansen_US
dc.subjecthardware acceleratoren_US
dc.subjectclusteringen_US
dc.subjectvector flowen_US
dc.titleA Reconfigurable 64-Dimension K-Means Clustering Accelerator With Adaptive Overflow Controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSII.2019.2922657en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFSen_US
dc.citation.volume67en_US
dc.citation.issue4en_US
dc.citation.spage760en_US
dc.citation.epage764en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000522403100032en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文