Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Te-Shengen_US
dc.contributor.authorHu, Wei-Fanen_US
dc.contributor.authorMisbah, Chaouqien_US
dc.date.accessioned2020-05-05T00:02:26Z-
dc.date.available2020-05-05T00:02:26Z-
dc.date.issued2020-05-15en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2020.109362en_US
dc.identifier.urihttp://hdl.handle.net/11536/154248-
dc.description.abstractWe propose a simple and efficient class of direct solvers for Poisson equation in finite or infinite domains related to spherical geometry. The solver was developed based on truncated spherical harmonics expansion, where the differential mode equations were solved by second-order finite difference method without handling coordinate singularities. The solver was further extended to study the dynamics of a diffusiophoretic particle suspended in Stokes flow. Numerical experiments suggested that the particle can achieve a self-sustained unidirectional motion at moderate Peclet numbers, whereas the particle motion becomes chaotic in high Peclet number regimes. The statistical analysis illustrates the run-and-tumble-like nature at short times and diffusive nature at long times without any source of noise. (C) 2020 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFast Poisson solveren_US
dc.subjectSpherical harmonics expansionen_US
dc.subjectDiffusiophoresisen_US
dc.subjectMicroswimmeren_US
dc.titleA direct Poisson solver in spherical geometry with an application to diffusiophoretic problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2020.109362en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume409en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000522726000002en_US
dc.citation.woscount0en_US
Appears in Collections:Articles