Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Pei-Yingen_US
dc.contributor.authorLiu, Chun-Shouen_US
dc.contributor.authorYang, Yao-Chunen_US
dc.contributor.authorHuang, Szu-Haoen_US
dc.date.accessioned2020-07-01T05:20:34Z-
dc.date.available2020-07-01T05:20:34Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-4026-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/154274-
dc.description.abstractWith rapid developments in deep learning and financial technology, a customized robo-advisory service based on novel artificial intelligence techniques has been widely adopted to realize financial inclusion. This study proposes a novel robo-advisor system that integrates trend prediction, portfolio management, and a recommendation mechanism. A gated neural network structure combining three multiobjective RankNet kernels could rank target financial products and recommend the top-n securities to investors. The gated neural network learns to choose or weigh each RankNet for incorporating the most important partial network inputs, such as earnings per share, market index, and hidden information from the time series. Experimental results indicate that the recommendation results of our proposed robo-advisor based on a gated neural network and multiobjective RankNets can outperform existing models.en_US
dc.language.isoen_USen_US
dc.subjectlearning preferencesen_US
dc.subjectrankingsen_US
dc.subjectdeep learningen_US
dc.titleA Robo-Advisor Design using Multiobjective RankNets with Gated Neural Network Structureen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA)en_US
dc.citation.spage77en_US
dc.citation.epage78en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000528619000015en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper