完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Yu-Shanen_US
dc.contributor.authorLu, Jun-Yien_US
dc.contributor.authorLiu, Duen-Renen_US
dc.date.accessioned2020-07-01T05:20:35Z-
dc.date.available2020-07-01T05:20:35Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-2816-0en_US
dc.identifier.issn2160-133Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/154277-
dc.description.abstractProviding news recommendations is an important trend for online news websites to attract more users and create more benefits. In this research, we propose a novel recommendation approach for recommending news articles. We propose A Collaborative Semantic Topic Model and an ensemble model to predict user preferences based on combining Matrix Factorization with articles' semantic latent topics derived from word embedding and Latent Dirichlet Allocation. The proposed ensemble model is further integrated with a recommendation adjustment mechanism to adjust users' online recommendation lists. We evaluate the proposed approach via offline experiments and online evaluation on a real news website. The experimental result demonstrates that our proposed approach can improve the recommendation quality of recommending news articles.en_US
dc.language.isoen_USen_US
dc.subjectRecommendationen_US
dc.subjectLatent topic analysisen_US
dc.subjectCollaborative topic modelen_US
dc.subjectRecommendation adjustmenten_US
dc.titleNEWS RECOMMENDATION BASED ON COLLABORATIVE SEMANTIC TOPIC MODELS AND RECOMMENDATION ADJUSTMENTen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC)en_US
dc.citation.spage54en_US
dc.citation.epage59en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000529201300010en_US
dc.citation.woscount0en_US
顯示於類別:會議論文