Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Spector, Daniel | en_US |
dc.date.accessioned | 2020-07-01T05:21:15Z | - |
dc.date.available | 2020-07-01T05:21:15Z | - |
dc.date.issued | 2020-08-15 | en_US |
dc.identifier.issn | 0022-1236 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jfa.2020.108559 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/154328 | - |
dc.description.abstract | In this paper we establish an optimal Lorentz space estimate for the Riesz potential acting on curl-free vectors: There is a constant C = C(alpha, d) > 0 such that parallel to L alpha F parallel to(Ld/(d-alpha),1(Rd;Rd)) <= C parallel to F parallel to(L1(Rd;Rd)) for all fields F is an element of L-1 (R-d;R-d) such that curl F = 0 in the sense of distributions. This is the best possible estimate on this scale of spaces and completes the picture in the regime p = 1 of the well-established results for p > 1. (C) 2020 The Author. Published by Elsevier Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Sobolev embeddings | en_US |
dc.subject | L-1-type estimates | en_US |
dc.subject | Riesz potentials | en_US |
dc.title | An optimal Sobolev embedding for L-1 | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jfa.2020.108559 | en_US |
dc.identifier.journal | JOURNAL OF FUNCTIONAL ANALYSIS | en_US |
dc.citation.volume | 279 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000531063200001 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |