Full metadata record
DC FieldValueLanguage
dc.contributor.authorSpector, Danielen_US
dc.date.accessioned2020-07-01T05:21:15Z-
dc.date.available2020-07-01T05:21:15Z-
dc.date.issued2020-08-15en_US
dc.identifier.issn0022-1236en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jfa.2020.108559en_US
dc.identifier.urihttp://hdl.handle.net/11536/154328-
dc.description.abstractIn this paper we establish an optimal Lorentz space estimate for the Riesz potential acting on curl-free vectors: There is a constant C = C(alpha, d) > 0 such that parallel to L alpha F parallel to(Ld/(d-alpha),1(Rd;Rd)) <= C parallel to F parallel to(L1(Rd;Rd)) for all fields F is an element of L-1 (R-d;R-d) such that curl F = 0 in the sense of distributions. This is the best possible estimate on this scale of spaces and completes the picture in the regime p = 1 of the well-established results for p > 1. (C) 2020 The Author. Published by Elsevier Inc.en_US
dc.language.isoen_USen_US
dc.subjectSobolev embeddingsen_US
dc.subjectL-1-type estimatesen_US
dc.subjectRiesz potentialsen_US
dc.titleAn optimal Sobolev embedding for L-1en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jfa.2020.108559en_US
dc.identifier.journalJOURNAL OF FUNCTIONAL ANALYSISen_US
dc.citation.volume279en_US
dc.citation.issue3en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000531063200001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles