完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Shao-Mingen_US
dc.contributor.authorLai, Yu-Lunen_US
dc.contributor.authorYan, Shaw-Yien_US
dc.contributor.authorWang, Chi-Chuanen_US
dc.date.accessioned2020-07-01T05:21:18Z-
dc.date.available2020-07-01T05:21:18Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn2374-4731en_US
dc.identifier.urihttp://dx.doi.org/10.1080/23744731.2020.1757326en_US
dc.identifier.urihttp://hdl.handle.net/11536/154370-
dc.description.abstractIn this study, a detailed modeling applicable for membrane dehumidifying system is proposed. This system contains a membrane module, 2-stage vacuum pumps, a condenser, and a regulating valve. The proposed model does not need any prior setting of the vacuum level of the permeate side, and the predictive results are in line with the benchmark. It is found that the COP (coefficient of performance) is 55% higher while the EF (energy factor) is almost 150% higher than the conventional one having the same dehumidifying capacity. For inlet with a fixed relative humidity, both COP and EF are increasd gradually when raising the inlet temperature. Yet the COP and EF reaches the peak values of 5.29 and 6.80 kg/kWh, respectively at a dry bulb temperature near 25.6 degrees C. Once surpassing this threshold temperature, a pronounced flip-over is seen for both COP and EF. The optimal COP can be obtained by simultaneously adjusting volumetric flowrate and condenser size rather than only adjusting each one individually.en_US
dc.language.isoen_USen_US
dc.titlePerformance analysis of a membrane dehumidifier system subject to component characteristics - a numerical modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/23744731.2020.1757326en_US
dc.identifier.journalSCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENTen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000533762300001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文