完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Hsiu-Penen_US
dc.contributor.authorAkimoto, Junen_US
dc.contributor.authorLi, Yaw-Kuenen_US
dc.contributor.authorIto, Yoshihiroen_US
dc.contributor.authorKawamoto, Masukien_US
dc.date.accessioned2020-07-01T05:21:18Z-
dc.date.available2020-07-01T05:21:18Z-
dc.date.issued2019-07-01en_US
dc.identifier.issn2574-0970en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsanm.9b00769en_US
dc.identifier.urihttp://hdl.handle.net/11536/154375-
dc.description.abstractProtein-conjugated single-walled carbon nano tubes (SWCNTs) have received much attention for their diverse applications in molecular biology. Intrinsically water insoluble SWCNTs avoid conjugation with proteins, which leads to limited availability of biomolecule nanocarbon composites. Because protein functions are directly affected by assembled structures, the synthesis of heterogeneous composites with bioreactive responses is a great challenge. We demonstrate that step-by-step assembled enzyme/polymer/SWCNTs are obtained by using noncovalent-bonding methodologies in aqueous media. A multifunctional polymer containing aromatic, cationic, and redox-active units allows for a direct aqueous dispersion of SWCNTs through pi interactions and a subsequent charge attraction to the enzyme, which yields the ternary composites. The resulting composites show bioreactive responses in enzyme-conjugated SWCNT networks. The solution-processed glucose oxidase (GO(x))/polymer/SWCNT composite displays a high current density of 1420 mu A cm(-2) by enzymatic oxidation of glucose. Only 2.4 mu g of GO(x) is shown to be necessary for the enzymatic reaction with a sensitivity of 72 mu A mM(-1) cm(-2). This high sensitivity results from the assembled structure through noncovalent-bonding interactions. We demonstrate that the bioreactive composite allows energy conversion from a glucose-including beverage (cola) to electricity. Lactate oxidase-driven bioreactivity also takes place on the structurally organized composite. This step-by-step methodology would be beneficial for enzyme-assisted energy conversion nanocomposites.en_US
dc.language.isoen_USen_US
dc.subjectsingle-walled carbon nanotubesen_US
dc.subjectself-assemblyen_US
dc.subjectmultifunctional polymersen_US
dc.subjectnoncovalent modificationen_US
dc.subjectbioreactive compositesen_US
dc.titleStep-by-Step Assembled Enzyme-Polymer-Carbon Nanotubes for Solution-Processed Bioreactive Compositesen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsanm.9b00769en_US
dc.identifier.journalACS APPLIED NANO MATERIALSen_US
dc.citation.volume2en_US
dc.citation.issue7en_US
dc.citation.spage4323en_US
dc.citation.epage4332en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000477917700033en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文