完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, LAen_US
dc.contributor.authorPortnoy, Sen_US
dc.date.accessioned2014-12-08T15:02:56Z-
dc.date.available2014-12-08T15:02:56Z-
dc.date.issued1996en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/11536/1543-
dc.description.abstractWe propose a two-stage trimmed least squares estimator for the parameters of structural equation model and provide the corresponding asymptotic distribution theory. The estimator is based on two-stage regression quantiles, which generalize the standard Linear model regression quantiles introduced by Koenker and Bassett (1978). The asymptotic theory is developed by means of ''Barhadur'' representations for the two-stage regression quantiles and the two-stage trimmed least squares estimator. The representations approximate these estimators as sums of independent random variables plus an additive term involving the first stage estimator. Asymptotic normal distributions are derived from these representations, and a simulation comparing some two-stage estimators is presented.en_US
dc.language.isoen_USen_US
dc.subjectlinear modelen_US
dc.subjectstructural equation modelen_US
dc.subjectregression quantileen_US
dc.subjecttrimmed least squares estimatoren_US
dc.titleTwo-stage regression quantiles and two-stage trimmed least squares estimators for structural equation modelsen_US
dc.typeArticleen_US
dc.identifier.journalCOMMUNICATIONS IN STATISTICS-THEORY AND METHODSen_US
dc.citation.volume25en_US
dc.citation.issue5en_US
dc.citation.spage1005en_US
dc.citation.epage1032en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:A1996UE42500007-
dc.citation.woscount19-
顯示於類別:期刊論文