完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Tsu-Kuangen_US
dc.contributor.authorLin, Juyien_US
dc.contributor.authorChen, Jen-Jeeen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.date.accessioned2020-07-01T05:21:21Z-
dc.date.available2020-07-01T05:21:21Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1748-1279en_US
dc.identifier.urihttp://hdl.handle.net/11536/154429-
dc.description.abstractPrecise positioning is a key issue for road vehicles in navigation, safety, and autonomous driving applications. While global positioning system (GPS) is widely accepted, it is still a challenge to achieve lane-level positioning. In this work, we consider the fusion of multi-sensory data using particle filter (PF), which is flexible in integrating different information in complex outdoor environments. We focus on three types of popular sensors: controller area network (CAN bus), GPS, and roadside camera. We propose a PF model that can adopt these types of sensory inputs for vehicle positioning. We show that in scenarios where vision sensory inputs are available, lane-level precision can be achieved. When there is no vision coverage, seamless localisation with reasonable precision can still be supported by GPS. Field trial results are presented to validate our model.en_US
dc.language.isoen_USen_US
dc.subjectV2Xen_US
dc.subjectdata fusionen_US
dc.subjectGPSen_US
dc.subjectglobal positioning systemen_US
dc.subjectOBUen_US
dc.subjecton board uniten_US
dc.subjectRSUen_US
dc.subjectroad side uniten_US
dc.subjectparticle filteren_US
dc.subjectpositioningen_US
dc.subjectvehicular networken_US
dc.subjectMECen_US
dc.subjectmobile edge computingen_US
dc.titleUsing V2X communications and data fusion to achieve lane-level positioning for road vehiclesen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF SENSOR NETWORKSen_US
dc.citation.volume32en_US
dc.citation.issue4en_US
dc.citation.spage238en_US
dc.citation.epage246en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department智慧科學暨綠能學院zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentCollege of Artificial Intelligenceen_US
dc.identifier.wosnumberWOS:000528704400005en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文