Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuang, Chi-Huangen_US
dc.contributor.authorLai, Yung-Yuen_US
dc.contributor.authorHou, Cheng-Hungen_US
dc.contributor.authorCheng, Yuh-Jenen_US
dc.date.accessioned2020-07-01T05:21:22Z-
dc.date.available2020-07-01T05:21:22Z-
dc.date.issued2020-04-27en_US
dc.identifier.issn2574-0962en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsaem.0c00319en_US
dc.identifier.urihttp://hdl.handle.net/11536/154451-
dc.description.abstractHigh photovoltage generation from a photoelectrode is important for efficient solar-driven water splitting. Here, we report a thermal treatment process that greatly enhances photovoltage generation from an n-Si/TiO2/Ni photoanode. By selectively annealing the TiO2 interlayer, the photoanode generates a high photovoltage of 570 mV, which is very competitive as compared with photovoltages produced using other similar metal-insulator-semiconductor structures with earth-abundant metal catalysts. Different annealing conditions and junction layer thicknesses were systematically investigated. It is found that the optimal annealing temperature occurs between 500 and 600 degrees C. Within this temperature range, the deposited amorphous Ti is converted into polycrystalline anatase phase TiO2. The optimal annealing time scales linearly with TiO2 thickness and inversely with annealing temperature. The large photovoltage generation is attributed to the reduced defect states and improved junction barrier height by the annealed TiO2 interlayer. This study demonstrates that thermal annealing offers an attractive approach to modify the TiO2 interlayer material's properties for photovoltage optimization.en_US
dc.language.isoen_USen_US
dc.subjectwater splittingen_US
dc.subjectphotoelectrochemistryen_US
dc.subjectphotoanodeen_US
dc.subjectphotovoltageen_US
dc.subjectjunction interlayeren_US
dc.subjectthermal annealingen_US
dc.titleAnnealed Polycrystalline TiO2 Interlayer of the n-Si/TiO2/Ni Photoanode for Efficient Photoelectrochemical Water Splittingen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsaem.0c00319en_US
dc.identifier.journalACS APPLIED ENERGY MATERIALSen_US
dc.citation.volume3en_US
dc.citation.issue4en_US
dc.citation.spage3902en_US
dc.citation.epage3908en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.department光電工程研究所zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.contributor.departmentInstitute of EO Enginerringen_US
dc.identifier.wosnumberWOS:000529190300087en_US
dc.citation.woscount0en_US
Appears in Collections:Articles