完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Shih-Hungen_US
dc.contributor.authorLi, Jung-Cheen_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2014-12-08T15:21:43Z-
dc.date.available2014-12-08T15:21:43Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-61284-972-0en_US
dc.identifier.issn1553-572Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/15445-
dc.description.abstractThis paper proposes an intelligent forecasting system based on a feedforward neural network aided grey model (FNAGM), integrating a first-order single variable grey model (GM(1,1)) and a feedforward neural network. The system includes three phases: initialization phase, GM(1,1) prediction phase, and FNAGM prediction phase. A number of parameters required for the FNAGM are selected in the initialization phase. A one-step ahead predictive value is generated in the GM(1,1) prediction phase, followed by the implementation of a feedforward neural network used to determine the prediction error of the GM(1,1) and compensate for it in the FNAGM prediction phase. We also adopted on-line batch training to adjust the network according to the Levenberg-Marquardt algorithm in real-time. According to the experimental results of a robot, the proposed intelligent forecasting system can provide high accuracy for both trajectory prediction and target tracking.en_US
dc.language.isoen_USen_US
dc.titleIntegration of Grey Model and Neural Network for Robotic Applicationen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETYen_US
dc.citation.spage2382en_US
dc.citation.epage2387en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000299032402097-
顯示於類別:會議論文