Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Jia-Weien_US
dc.contributor.authorHsu, Hsun-Haoen_US
dc.contributor.authorChang, Chia-Juien_US
dc.contributor.authorChiu, Yu-Jingen_US
dc.contributor.authorTseng, Hsiao-Fanen_US
dc.contributor.authorChang, Kai-Chiehen_US
dc.contributor.authorKarapala, Vamsi Krishnaen_US
dc.contributor.authorLu, Tien-Changen_US
dc.contributor.authorChen, Jiun-Taien_US
dc.date.accessioned2020-07-01T05:21:23Z-
dc.date.available2020-07-01T05:21:23Z-
dc.date.issued2020-05-05en_US
dc.identifier.issn0014-3057en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eurpolymj.2020.109648en_US
dc.identifier.urihttp://hdl.handle.net/11536/154463-
dc.description.abstractPolyimides (PIs) possess great mechanical properties, outstanding thermal stability, solvent inertness, and the ability to be converted into carbon by thermal carbonization. Although studies on carbon materials derived from PIs have been conducted, PI-derived one-dimensional (1D) carbon materials with high surface areas, especially carbon tubes or hollow carbon fibers, have been rarely investigated. In this work, we provide a simple and facile method to prepare hollow carbon fibers by carbonizing hollow PI fibers. Blend solutions of poly(amic acid) carboxylate salts (PAAS) and polystyrene (PS) are electrospun to form core-shell PS/PAAS fibers, in which the PS and PAAS domains are used as sacrificial and precursor materials, respectively. By imidizing the PAAS to PI and selectively removing PS, hollow PI fibers can be obtained. Finally, the hollow PI fibers are carbonized to form hollow carbon fibers. The fiber samples at different stages are examined by thermal gravimetric analysis (TGA), Raman spectrometry, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The infrared images show that the thermal energy transfer rates of the hollow carbon fibers are higher than those of the hollow PI and PS/PI core-shell fibers, which can be attributed to the better thermal conductivity of carbon resulting from the covalent sp(2) bonding between carbon atoms and the high surface area of the hollow structure.en_US
dc.language.isoen_USen_US
dc.subjectCarbonizationen_US
dc.subjectCore-shell fibersen_US
dc.subjectElectrospinningen_US
dc.subjectHollow carbon fibersen_US
dc.subjectPolyimidesen_US
dc.titlePreparation and thermal dissipation of hollow carbon fibers from electrospun polystyrene/poly(amic acid) carboxylate salt core-shell fibersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eurpolymj.2020.109648en_US
dc.identifier.journalEUROPEAN POLYMER JOURNALen_US
dc.citation.volume130en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用化學系zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000529795700021en_US
dc.citation.woscount1en_US
Appears in Collections:Articles